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1. Introduction

Sound radiation from plates in baffles, and shells is a well-studied subject. More recently,
researchers are trying to optimize these structures for minimizing sound radiation [1]. A few
typical parameters which are optimized include material tailoring [2], location and number of
point masses attached to the structure [3], dynamic compliance [4], and damping layer placements
[5]. These techniques include numerical methods such as BEM and FEM.
One of the situations faced in a typical industry is quietening of a radiating panel set into

vibration by various forces. The engineer is often with the challenge of performing a quick study
and coming up with a solution which does not involve extensive computations, expensive
packages and time. There needs to be a quick method to study the influence of a line support
under various orientations and find the optimum angle. This by no means downplays the
importance of FEM/BEM techniques which are very much required for complex problems, and
specially in the design stage. However, in an industry scenario, a quick insight may become
important, for which an approximate closed-form approach is attractive. Thus, the salient feature
of this paper is the simplicity with which a constraint can be implemented analytically, which
affords quick physical insights and helps make a quick decision.
A point-force-driven simply supported rectangular plate set in an infinite baffle is subjected to a

line constraint. The line constraint is approximated by attaching infinitely stiff springs along the
intended line (shown in Fig. 1). Receptance method [6–8] is used to arrive at the new natural
frequencies and mode shapes. The method has the advantage that the new mode shapes (and
natural frequencies) are expressible in terms of the original mode shapes (and natural frequencies)
and the strategy is easily programmable in a computational package like MATLAB.
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2. Theory

The receptance method is well developed and a detailed description for plates can be found in
Ref. [7]. The method is described in brief here. Given the two structures connected at the two
points shown in Fig. 2, the displacement and force relationships for structure A are given by

XA1

XA2

" #
¼

a11a12
a21a22

" #
FA1

FA2

" #
; ð1Þ

where XA1 and XA2 are the displacements at locations A1 and A2, respectively. FA1 and FA2 are
forces at the same locations applied to structure A. Similarly, the equations for structure B are
given by

XB1

XB2

" #
¼

b11b12
b21b22

" #
FB1

FB2

" #
: ð2Þ

Thus, aij and bij ; i; j ¼ 1; 2 are the drive point and cross receptances, which have the units of
displacement per unit force. a11 is the displacement at point 1 due to a unit force at point 1, and
a12 is the displacement at point 1 due to a unit force at point 2. When two such systems are joined
together, the forces FA and FB become internal forces and they have to add to zero, and the
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Fig. 1. Five springs attached to a plate along a straight line.

Fig. 2. Two structures A and B, connected at two points 1 and 2.
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displacements have to be equal. Thus,

fFAg ¼ �fFBg ð3Þ

and

fXAg ¼ fXBg; ð4Þ

where the curly brackets indicate force and displacement vectors. By combining the two equations
the following expressions is obtained:

ða11 þ b11ÞFA1 þ ða12 þ b12ÞFA2 ¼ 0;

ða21 þ b21ÞFA1 þ ða22 þ b22ÞFA2 ¼ 0: ð5Þ

In general,

½½a	 þ ½b		fFAg ¼ 0: ð6Þ

FA1 ¼ FA2 ¼ 0 being the trivial solution, the non-trivial solution is found by setting the
determinant

a11 þ b11 a12 þ b12
a21 þ b21 a22 þ b22

�����
����� ¼ 0: ð7Þ

Thus, one needs to know the a’s and the b’s of the two structures. In our problem, a simply
supported plate is connected to springs. So let the a’s belong to the plate and the b’s to the springs.
The 2
 2 receptance matrix ½a	 for the plate is derived below.

2.1. Receptance matrix for a simply supported plate

The response at a point x; y of a simply supported plate due to a harmonic point force at xp; yp

is given by Ref. [7]:

W ðx; y; tÞ ¼
1

rhNmn

XN
m¼1

XN
n¼1

sinðmpxp=aÞ sinðnpyp=bÞFejot

o2
mn � o2

Umn; ð8Þ

where F is the force amplitude, a the x length of the plate, b the y length of the plate, r the plate
density, h the thickness of the plate, omn the ðm; nÞth natural frequency in rad/s, and o is the
driving frequency. The mode shapes of a simply supported plate are given by

Umn ¼ sinðmpx=aÞ sinðnpy=bÞ ð9Þ

and

Nmn ¼
Z a

0

Z b

0

U2
mn dx dy; ð10Þ

which is ab=4 for a simply supported plate.
If l is the equivalent viscous damping factor, the modal damping coefficient is given by

xmn ¼
l

2rhomn

ð11Þ
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and the damped response is given by

W ðx; y; tÞ ¼
1

rhNmn

XN
m¼1

XN
n¼1

sinðmpxp=aÞ sinðnpyp=bÞFejot

o2
mn � o2 þ 2jxmnomno

Umn: ð12Þ

Thus, a11 is given by (using Eq. (10) for Nmn)

a11 ¼
X1

F1ejot

¼
4

rhab

XN
m¼1

XN
n¼1

sinðmpx1=aÞ sinðnpy1=bÞFejot

o2
mn � o2

sinðmpx1=aÞ sinðnpy1=bÞ; ð13Þ

and a12 by

a12 ¼
X1

F2ejot

¼
4

rhab

XN
m¼1

XN
n¼1

sinðmpx2=aÞ sinðnpy2=bÞFejot

o2
mn � o2

sinðmpx1=aÞ sinðnpy1=bÞ: ð14Þ

Similarly, the other a’s can be found.

2.2. The receptance for a spring

The receptance for a spring is obtained from the equation for spring dynamics:

XB ¼
FBe

jot

KB

: ð15Þ

Thus,

b ¼
XB

FBejot
¼

1

KB

: ð16Þ

For the case in this paper where the plate is connected to discrete springs, the cross receptances for
the springs are zero, since the force on one spring does not cause the other spring to respond.

2.3. Receptance for plate attached to springs

For a plate connected to two springs, by using Eq. (7), the receptance matrix is given by

a11 þ
1

KB1
a12

a21 a22 þ
1

KB2

��������

��������
¼ 0: ð17Þ

The structure of the matrix now can be extended to the case where N springs are attached along
a line (as in Fig. 1). The stiffness of the springs is now set to infinity creating a ‘‘line’’ support. The
determinant of the N 
 N receptance matrix set to zero gives the new natural frequencies of the
plate under this line constraint. The new mode shapes of the plate can be determined from the
point response expression of the original plate [7,8]. For the case of a single spring, Eq. (8) gives
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the new mode shape, when o the excitation frequency is set to the new natural frequency and xp;
yp are the spring attachment co-ordinates. For an N 
 N matrix, there will be N roots which are
the new resonances. A similar method as for the single spring works, except that here, since the
plate is constrained at N points, it will experience point forces at those locations. The magnitudes
of these point forces are given by the elements of the eigenvector corresponding to the zero
eigenvalue of the receptance matrix evaluated at the new natural frequency ok: Thus, the new kth
mode shape is given by substituting ok for o in Eq. (8) with an additional summation term as
follows:

Ukðx; yÞ ¼
4

rhab

XN
m¼1

XN
n¼1

PN
i¼1 sinðmpxi=aÞ sinðnpyi=bÞFik

o2
mn � o2

k

Umn; ð18Þ

where Fik is the ith element of the eigenvector (of the zero eigenvalue) corresponding to the kth
new natural frequency and xi; yi are the location of the ith spring.
The response of the constrained plate to a point force can again be calculated as

W ðx; y; tÞ ¼
1

rh

XN
k¼1

1

Nk

Ukðxi; yiÞFejot

o2
k � o2 þ 2jxkoko

Ukðx; yÞ; ð19Þ

where F is the force amplitude at location xi; yi; ok the kth natural frequency in rad/s, xk the
modal damping coefficient (calculated as in Eq. (11)) and o is the driving frequency. Uk is the new
mode shape given by Eq. (18). And

Nk ¼
Z a

0

Z b

0

U2
k dx dy: ð20Þ

2.4. Radiated sound power

The radiated sound power expression for a rectangular plate set in a baffle was derived by Ref.
[5]. The power is calculated by an integral of sound intensity over the plate surface area. The
whole expression turns out to be in terms of plate velocities. Only the final expression is given
below:

Wp ¼
rao
4p

Z a

0

vnnðx
0; y0Þ

Z b

0

vnðx; yÞ
sinðk j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
jÞ

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
j

dx dy dx0 dy0; ð21Þ

where vnðx; yÞ is the velocity at point ðx; yÞ on the plate and vnðx0; y0Þ is the velocity at point ðx0; y0Þ
on the plate. ra is the density of air, k is the wavenumber.

3. Procedure

A plate with dimensions and properties given in Table 1 is attached with five springs along a line
starting with an angle of 201 to x-axis and going through the origin (see Fig. 1).
The angle is varied in increments of 51 till 701: The point force is located at x ¼ 0:0326;

y ¼ 0:056: The excitation frequency is 1000 rad=s which is an off-resonance frequency of the
original plate. The new resonances, mode shapes and velocity response are computed by using
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Eq. (17), (18) and (19), respectively. Eq. (21) is then used to compute sound power at each of the
angles. Three-point Gaussian quadrature is used to compute power after dividing the plate into
10
 10 equal segments. A few resonances of the new modes for different constraint angles are
given in Table 2.

4. Results and discussion

A few modes along with the line constraint are shown in Fig. 3. The first, second and third rows
are for constraints at 201; 401 and 701; respectively. And Fig. 4 shows response of the second mode
at the 701 constraint angle ð1243 rad=sÞ: The point-marked line is the response along the line
constraint. And the other lines are responses at other constant ‘‘y’’ locations. The constraint is at
an angle to the x-axis hence it stops short of the full length of the plate. As is evident, the mode
shape has no response at the spring locations and low response along the line constraint. The
springs are located close enough that radiation to the sinusoidal response along the line should
mostly cancel. It is important to note that the new resonances should be computed accurately.
Else the mode shapes will be in error. Table 2 shows the comparison between the ANSYS
computed resonances and the current method for a few constraint angles. In ANSYS, the vertical
displacement for the nodes along the line constraint was set to zero. Every time the constraint
angle was changed, the element aspect ratios were changed accordingly so that nodes would lie on
the constraint.
Fig. 5 shows the computed sound power for the different constraint angles. The power is

maximum at the constraint angle of 351: The second mode at this angle is at 1020 rad=s which
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Table 1

E ðN=m2Þ r ðkg=m3Þ a (m) b (m) h (m) m l

20.7e10 7850 0.326 0.56 0.002 0.3 0.01

Table 2

Constraint angle (deg) Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

20 FEM 70.398 136.55 205.75 237.4 273.96

Receptance 70.574 137.37 206.29 239.24 275.66

25 FEM 72.65 143.38 208.2 246.92 286.38

Receptance 72.78 143.84 208.46 248.36 287.35

60 FEM 156.45 177.76 282.34 320.7 409.15

Receptance 156.63 178.25 282.61 316.06 401.24

65 FEM 145.53 208.31 260.24 363.66 368.35

Receptance 145.78 208.46 260.43 361.79 367.01

70 FEM 129.70 197.53 275.88 337.72 354.66

Receptance 130.09 197.93 275.91 338.46 356.37

All values in Hz.
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Fig. 3. New modes for three constraint angles: 1st row, 201; 2nd row, 401; 3rd row, 701 to the x-axis.

Fig. 4. Response along the constraint and at other points for the 1243 rad=s mode at 701 constraint angle.
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results in a high response. However, at 301; 401 and 601; there are resonant modes with fre-
quencies 956, 1092 and 984 rad=s; respectively. The resonances at 956 and 1092 are quite
away from 1000. The last one ð984 rad=sÞ is only 16 rad=s away from the driving frequency.
Yet it radiates less. The reason for low radiation is that at this angle, the constraint is exactly
along the plate diagonal and hence divides into two halves. The mode has the two halves out of
phase, like a dipole. Since 1000 rad=s is below critical frequency, the two halves exactly cancel.
Whereas at 351; the mode has unequal out-of-phase areas which do not cancel. If the problem is
posed as a sound minimization problem, the primary mechanism would be distancing the new
resonances from the driving frequency as is the case for 201 and 701; except for cases like the
984 rad=s resonance.

5. Conclusion

In conclusion, a line constraint was approximated on a simply supported plate using infinitely
stiff springs attached along a line and sound power calculated for a point-driven case. The angle of
the constraint was varied and the minimum radiation angle found. It was shown to be a valid
approximation without use of extensive FEM/BEM programs. The programs were written in
MATLAB. This is a quick and useful method for engineers in an industrial scenario where time is
a constraint sometimes.
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Fig. 5. Sound power as a function of constraint angle for a point-excited simply supported plate in a baffle.

Frequency ¼ 1000 rad=s:
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